Bi-invariant metrics on groups

Jarek Kędra

University of Aberdeen

Selected Topics in Mathematics - 4 OCTOBER 2024

In collaboration with: Brandenbursky, Gal, Jaspars, Karlhofer, Libman, Marcinkowski, Martin, Shelukhin, Trost.

Overview

- Definition.
- Riemannian Geometry.
- Hamiltonian dynamics.
- ► Group Theory.
- Biology.
- General outlook.
- Free groups.

Definition

Let G be a group. A metric d on G is called *bi-invariant* if both the multiplication from the right and from the left are isometries:

$$d(xg,yg)=d(x,y)=d(gx,gy)$$

for all $x, y, g \in G$.

Definition

Let G be a group. A metric d on G is called *bi-invariant* if both the multiplication from the right and from the left are isometries:

$$d(xg,yg)=d(x,y)=d(gx,gy)$$

for all $x, y, g \in G$.

$$\implies d\left(g^{-1}xg,1\right) = d(xg,g) = d(x,1)$$

Definition

Let G be a group. A metric d on G is called *bi-invariant* if both the multiplication from the right and from the left are isometries:

$$d(xg,yg) = d(x,y) = d(gx,gy)$$

for all $x, y, g \in G$.

$$\implies d\left(g^{-1}xg,1\right) = d(xg,g) = d(x,1)$$

 \implies Conjugacy classes live on spheres centered at 1.

Definition

Let G be a group. A metric d on G is called *bi-invariant* if both the multiplication from the right and from the left are isometries:

$$d(xg,yg) = d(x,y) = d(gx,gy)$$

for all $x, y, g \in G$.

$$\implies d\left(g^{-1}xg,1\right) = d(xg,g) = d(x,1)$$

 \implies Conjugacy classes live on spheres centered at 1.

$$\blacktriangleright \ d(g,h) = \|gh^{-1}\| = \|g^{-1}h\|.$$

Riemannian geometry

- G a Lie group with Lie algebra \mathfrak{g} .
- Choose an inner product on $\mathfrak{g} = T_1 G$.
- ▶ Propagate over *TG* with left multiplication:

$$\langle X,Y\rangle_g=\langle dL_{g^{-1}}X,dL_{g^{-1}}X\rangle_1.$$

 \implies Left-invariant metric on G.

Riemannian geometry

$$G = SO(3)$$

Ad: $SO(3) \rightarrow Aut(so(3))$

 $G = SL(2, \mathbf{R})$ Ad: SL(2, **R**) \rightarrow Aut(sl(2, **R**))

Hamiltonian dynamics

- $\blacktriangleright~(M,\omega)$ a symplectic manifold.
- $\iff \omega$ closed non-degenerated two-form
- \implies Isomorphism between vector fields and one-forms:

$$X \longleftrightarrow \omega(X, -) = \iota_X \omega$$

Hamiltonian dynamics

•
$$(M, \omega)$$
 - a symplectic manifold.

 $\iff \omega$ - closed non-degenerated two-form

 \implies Isomorphism between vector fields and one-forms:

$$X \longleftrightarrow \omega(X, -) = \iota_X \omega$$

Hofer's metric

$$\|\psi\| = \inf_{H} \int_{0}^{1} \operatorname{osc} H(t, -) \, dt$$

All known examples have infinite Hofer diameter.

Autonomous metric

▶
$$\psi \in \operatorname{Ham}(M, \omega).$$

▶ $\psi = \psi_1$, where $\{\psi_t\} \in \operatorname{Ham}(M, \omega).$
▶ $\psi_t \longleftrightarrow X_t \longleftrightarrow H_t.$

• ψ is autonomous if $H_t = H$ is time independent.

$$\|\psi\| = \min\{n \in \mathbf{N} \mid \psi = \alpha_1 \cdots \alpha_n, \ \alpha_i \text{ is autonomous}\}$$

Group theory

G a group generated by $S \subseteq G$; $S = S^{-1}$. Word norm and metric:

$$\begin{split} \|g\|_S &= \min\{n \in \mathbf{N} \mid g = s_1 \cdots s_n, \ s_i \in S\} \\ d_S(g,h) &= \|gh^{-1}\|_S \end{split} \qquad \texttt{right-invariant}$$

If $g^{-1}Sg = S$ for every $g \in G$ then the norm is conjugation-invariant and the metric bi-invariant.

- \blacktriangleright S the set of all reflections.
- d_S the reflection metric is **bi-invariant**.

- \blacktriangleright *S* the set of all reflections.
- d_S the reflection metric is **bi-invariant**.
- Finitely generated groups.
 - ► S finite generating set.
 - d_S **right-invariant** unless G is (virtually) abelian.
 - Up to Lipschitz equivalence, d_S does not depend on S.

- \blacktriangleright S the set of all reflections.
- d_S the reflection metric is **bi-invariant**.
- Finitely generated groups.
 - S finite generating set.
 - d_S **right-invariant** unless G is (virtually) abelian.
 - Up to Lipschitz equivalence, d_S does not depend on S.
- Commutator subgroup $[G,G] \subseteq G$.
 - ▶ S the set of all commutators $[g,h] \in [G,G]$, $g,h \in G$.
 - d_S commutator metric is bi-invariant.
 - Good topological interpretation.

- \blacktriangleright S the set of all reflections.
- d_S the reflection metric is **bi-invariant**.
- Finitely generated groups.
 - S finite generating set.
 - d_S **right-invariant** unless G is (virtually) abelian.
 - Up to Lipschitz equivalence, d_S does not depend on S.
- Commutator subgroup $[G,G] \subseteq G$.
 - ▶ S the set of all commutators $[g,h] \in [G,G]$, $g,h \in G$.
 - d_S commutator metric is bi-invariant.
 - Good topological interpretation.
- $\mathbf{F}_2 = \langle a, b \rangle$ free group on two generators.
 - S all conjugates of a, b and their inverses.
 - ► d_S bi-invariant.
 - Good algorithms for computations (we have a software [2013]).

- \blacktriangleright **F**_n.
 - ▶ $S \subseteq \mathbf{F}_n$ all palindromes.
 - Palindromic metric.
 - Infinite diameter (at the end on request).

- \blacktriangleright **F**_n.
 - ▶ $S \subseteq \mathbf{F}_n$ all palindromes.
 - Palindromic metric.
 - Infinite diameter (at the end on request).
- \blacktriangleright (M,g) Riemannian manifold.
 - ► $S \subseteq \pi_1(M, x)$ the set of all closed geodesics.
 - Assume S generates $\pi_1(M, x)$.
 - \implies the closed geodesic metric on $\pi_1(M, x)$.

RNA folding

- ► RNA: sequence of letters A,C,G,U.
- ► Pairings: A-U, C-G.
- ► Folding:

RNA folding

- ► RNA: sequence of letters A,C,G,U.
- ▶ Pairings: A-U, C-G.
- ► Folding:
- It is the conjugation-invariant word norm on $\mathbf{F}_2!$

RNA folding

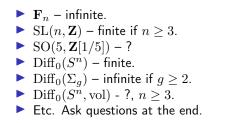
- ► RNA: sequence of letters A,C,G,U.
- ▶ Pairings: A-U, C-G.
- ► Folding:
- It is the conjugation-invariant word norm on $\mathbf{F}_2!$
- Biologists found our algorithm in 1980!

Bi-invariant word metrics

- \blacktriangleright *G* normally finitely generated group.
- \blacktriangleright S union of finitely many conjugacy classes (and inverses).
- ▶ d_S **the** bi-invariant word metric.

Bi-invariant word metrics

- ► *G* normally finitely generated group.
- ▶ S union of finitely many conjugacy classes (and inverses).
- ▶ *d_S* **the** bi-invariant word metric.
- Q: Is the diameter of d_S finite or infinite?



Non-el. hyperbolic Chevalley Cocompact lattice

►
$$G = \mathbf{F}_2 = \langle a, b \rangle$$

► $g = b^{-1}a^{-1}b^{-1}aba^{-1}b^{-1}a^{-1}baba$

$$\begin{array}{l} \bullet & G = \mathbf{F}_2 = \langle a, b \rangle \\ \bullet & g = b^{-1}a^{-1}b^{-1}aba^{-1}b^{-1}aba^{-1}b^{-1}a^{-1}baba \\ \bullet & \|g^2\| = \|g\| = 4 \\ \bullet & \text{Biological meaning?} \\ \bullet & \|g^n\| = 4, 4, 6, 8, 10, 10, 12, 14, 16, 16, 18, 20, 22, 22, 24, 26, \cdots \end{array}$$

Hmmm...this is quite regular...

$$\begin{array}{l} \mathbf{F} & G = \mathbf{F}_2 = \langle a, b \rangle \\ \mathbf{F} & g = b^{-1}a^{-1}b^{-1}aba^{-1}b^{-1}aba^{-1}b^{-1}a^{-1}baba \\ \mathbf{F} & \|g^2\| = \|g\| = 4 \\ \mathbf{F} & \text{Biological meaning?} \\ \mathbf{F} & \|g^n\| = 4, 4, 6, 8, 10, 10, 12, 14, 16, 16, 18, 20, 22, 22, 24, 26, \cdots \\ \mathbf{F} & \text{Hmmm...this is quite regular...} \\ \mathbf{F} & \|[a, b]^n\| = 2, 4, 4, 6, 6, 8, 8, \cdots = \begin{cases} n+1 & \text{if } n \text{ is odd} \\ n+2 & \text{if } n \text{ is even} \end{cases} \\ \mathbf{F} & \text{In fact...} \end{array}$$

Jaspars's Theorem

Let $g \in \mathbf{F}_n$ be any element in a free group. Then the sequence $\|g^n\|$ is uniformly semi-arithmetic. In particular, the limit

$$\lim_{n \to \infty} \frac{\|g^n\|}{n}$$

is rational.

THANK YOU! Any questions?